

Petri Ekholm & Jouni Lehtoranta, Finnish Environment Institute, Finland Antti-Jussi Kallio, Department of Physics, University of Helsinki, Finland Risto Uusitalo & Antti Iho, Natural Resources Institute, Finland petri.ekholm@environment.fi

This study is part of the Shared Waters project (<u>www.samassavedessa.fi/en-US</u>) funded by the Finnish Cultural Foundation

Release of soil-bound phosphorus in aquatic systems

Fig. 1. Phosphorus is released by desorption in the water phase and as a consequence of microbial mineralisation processes in sediments.

We quantify the release of algal-available P from soils in anoxic conditions

This is important when assessing the efficiency of agricultural erosion control measures in mitigating eutrophication

Eutrophication?

Table. 1. Characteristics of the soil samples. Textural class: clay.

Sample	P		Al	Fe	С
	Total	Water extraction (1:100)	Oxalate	extraction	
	mg/kg				%
Forest	1 200	2	3 200	18 100	3.5
Field 1	1 300	18	2 600	15 100	3.0
Field 2	1 700	52	2 700	12 200	3.7
Field 3	1 200	8	3 500	10 000	6.8
Field 4	1 100	14	2 700	9 200	3.6

Fig. 3. Phosphorus release during the incubation. **Green line**: release during the one-day aerobic phase. **Columns**: release during the 2-month anaerobic incubation without (light brown) and with (dark brown) carbon addition.

RESULTS

- Anaerobic mineralisation was seen in carbon (DOC, DIC), ammonium, and terminal electron acceptors (Fe³⁺, SO₄) and their end products (Fe²⁺, H₂S, FeS)
- Formation of iron sulfides was confirmed by Xray absorption spectrometer
- Most of the mineralisation was coupled to sulfate reduction (Fig. 4a)
- Only little soil organic carbon was mineralised
- Small amount of soil-bound phosphorus was desorbed (green line in Fig. 3)
- Mineralisation was slow but greatly enhanced phosphorus release (Fig. 3)
- Phosphorus release varied among the soils (Fig. 3)
- Carbon appeared to enhance phosphorus release at soil-specific rates (Fig. 4b)

Fig. 4. (a) Mineralisation occurring through sulfate reduction and **(b)** release of phosphorus as a function of increase in dissolved inorganic carbon (DIC).

CONCLUSIONS

- Release of soil-bound phosphorus depends on (1) soil itself, (2) organic carbon and (3) sulfate
- Soils are likely to release more phosphorus in eutrophic than oligotrophic marine bottom sediments

Impact of erosion control as a eutrophication abatement measure depends on the characteristics of the soil and of the receiving water body

